
Eltanin: Phil’s document processor (version 2.1)
Phil Brooke, Green Pike Ltd

11 Jan 2023

Outline of document processing
Major changes

core.5 to core.6
core.19 to core.20

Summary of directives for document authors
General
Setting references to sections, paragraph and other locations
Overriding paragraph numbering occasionally
Setting anchor name for a paragraph
Reference to values and targets

Longer details
Processor passes
Configuration structure
Macros/definitions

Simple
Complex
Built-in

Choice of delimiters
Choice of macro method
Choice of Pandoc numbering
Cross-references (xrefs)
Resolving cross-references
Render HTML
Dependencies

Recommended
Copyright

Outline of document processing

Copyright © 2022-2023 Phil Brooke & Green Pike Ltd. Released under GPL
v3, see the copyright section.

Write slightly-enhanced Pandoc markdown into a file in input/whatever.txt. As
with Markdown generally, the intention is that the source Markdown files
should be generally readable without excessive use of tags or formatting
instructions (although some are inevitable). This is the main rationale for not
using Docbook (XML) (although assemblies have some potential for
organising a knowledge base).

1

https://garrettgman.github.io/rmarkdown/authoring_pandoc_markdown.html
provides reasonable detail of Pandoc’s markdown notation.

2

https://pandoc.org/
https://garrettgman.github.io/rmarkdown/authoring_pandoc_markdown.html

Major changes
core.5 to core.6

core.19 to core.20

Summary of directives for document authors

General

Setting references to sections, paragraph and other locations

p — assigns the current paragraph as target and its number as value
s — assigns the current section as target and its number as value
t — assigns a target (but no value)

This is substantially revised from the core.5 version, which used multiple
separate files. In particular, the use of Make is minimal and optional, and the
main driver is (from core.6) a Python3 program.

3

The input/output file structure was reorganised so they mirror each other. The
YAML configuration was changed to move common configuration stanzas into
their own list. The local variable output_stem was changed to file_stem.

4

This section is aimed at those updating documents where the configuration
has already been prepared.

5

The directives and macros are case-sensitive.6

Directives are bracketed with dollar signs, i.e., $…$ (with a few exceptions).
They are generally a single letter, a colon, then a key.

7

Var2 VarND Var1

Targets for a cross-reference (“inbound xrefs”):8

file:///home/pjb/units/git-upload-202208/eltanin/output/test2/Variant_document_2.html#origin14
file:///home/pjb/units/git-upload-202208/eltanin/output/test2/Variant_document_ND.html#origin10
file:///home/pjb/units/git-upload-202208/eltanin/output/test1/Variant_document_1.html#origin14

Overriding paragraph numbering occasionally

Setting anchor name for a paragraph

Reference to values and targets

v — shows the value (from a p, s or l directive, error if it’s a t target)
b — produces the URL in brackets (parentheses, not the usual delimiter)
a — produces the URL in angle brackets
h — produces the value (as for v) wrapped in an anchor pointing to it (as if b)
Upper-case variants of v, b, a and h. Too many back-references from a single (part of
a) document can be messy, so V, B, A and H behave as their lower-case variant but
without creating a back-reference.

Longer details

macros (both simple and more complicated)
CSS

x is a special directive that adds a prefix. This is useful when the same
document source produces multiple outputs. Otherwise, multiple output files
from a single input file would result in duplicate cross-reference targets.

9

l can be used to set local variables, not visible outside that particular
document and can be repeated across documents. This is useful for building
titles, and the default structure and reports expect a small number to be set.
The syntax is a variable name, equals sign, and its value.

10

The npn directive between exclamation marks, not dollar signs at the very
start of a paragraph will cause numbering of that paragraph to be omitted
(completely; internal cross-referencing is also disabled for that paragraph).

11

Markdown provides for a section id to be set using {#…}. The prefix directive
!np!… at the very start of a paragraph overrides the default anchor for a
numbered paragraph to the remainder of that string.

12

Referring to a cross-reference (“outbound xrefs”) and values (including those
set by l directives):

13

Configuration is available via a YAML file. Quite a lot can be configured: see
settings within the Python source. Consider using yamllint to validate
configuration files.

14

Customisation is also available via15

hacking the Python code — this is recommended when carrying out fixups, especially
to the resulting HTML. One pattern is to set a local variable via the source document,
then use a fixup to replace a placeholder in the Pandoc template

Processor passes

Read the configuration, input files and various macros
Apply the macros / definitions (and remove them when no longer needed)
Modify the Pandoc AST to add section and paragraph numbers.
Build a set of cross-references, then apply them to resolve various values and links
Insert back-references
Remove some “stuffing” data
Use Pandoc to write HTML
(optionally) use Chromium to convert HTML to PDF

Configuration structure

outputs which describes common groups of outputs
configs which describes common groups of definitions
short which gives the back-reference codes for each output file

config — a name to refer to the config
secnum and paranum are boolean flags as to whether paragraph and section
numbers should be shown
toc is optional and default to false. If set true, include a table of contents
defns — a list of the macro files to be used for these outputs

dir — the output directory — these can be shared amongst multiple output blocks

All the outputs should magically appear in the output directory.16

The document sources and auxiliary files are stored in a Git-controlled
repository. This means that tags and branches can be used to manage
development versions, proposed versions and record an audit trail of changes
and releases. By including the build instructions with any particular version,
then it should remain possible to replicate the outputs of any commit (provided
that the dependencies in section 14 continue to provide the same output).

17

The Python program drives a series of incremental changes to the files. These
intermediate steps are normally hidden, but can be shown with the --steps
command line option.

18

In rough order, the passes:19

The YAML file comprises a series of keys. The most notable are20

The configs block gives:21

The outputs block gives:22

config — a reference to a config in the configs block. If omitted, then each file
needs an entry in aconfs
aconfs — alternative configs. A list of output name to a particular config. Useful for
overriding the configuration for a file in a particular directory
html — list of HTML outputs wanted
pdf — list of PDF outputs wanted — this must be a subset of the previous
catalogue_title — set the name of the catalogue
catalogue_order — a list of names to sort orders, where negative is at the end
no_catalogue — if set True, inhibits generation of the catalogue file
map — the relative path to other output blocks

Macros/definitions
Simple

Complex

applying variation, e.g., a macro that only provides output for some variants and not
others
inserting common blocks of text

Built-in

Choice of delimiters

These definitions are contained in a file starting with the line simple.
Thereafter, the first word of each line is the directive to be searched for, and
the rest of the line (after a single space) is the replacement text.

23

These are most useful for short imperatives and applying consistent formatting
with Pandoc.

24

The first line is complex, followed by a series of definitions.25

Each definition takes the name of the directive/macro, the number of
arguments (0 to 10) and then its definition (in [{…}]).

26

These are particularly useful for27

There is a single built-in macro, $include, which includes another file. The path
is relative to the master working directory, not the including file’s location.

28

The default is $. ! works reasonably well, but is less visually clear.29

Choice of macro method

m4 was used originally. However, it’s less ideal due to the need to chain operations
together and a hope of porting this to Windows (the native environment is Linux).
More dependencies are problematic.
m4’s experimental (configuration option) changeword option could be useful
Pandoc’s Lua filters and Lua’s gsub (or similar) function — but this is more
challenging because of the need to scan through all Str tokens and possibly split
them into at punctuation into pandoc.Strong() and pandoc.Str().

Choice of Pandoc numbering

CSS numbering (e.g., via :before). Rejected because we’d still have to count
through the items to build the value-labels within the cross-referencing.
Using m4 would mean parsing paragraphs to match Pandoc’s.

Cross-references (xrefs)

@ would be better but repeatedly conflicts with existing features, particularly
citation support.

30

The macro expansions and their arguments are quoted with [{…}] to make
collisions less likely.

31

A simplistic build of simple and slightly more complex macros was
implemented directly in Python for the following reasons.

32

Initially, Lua filters were used. However, these are slightly harder to manipulate
in general for this purpose than directly mangling the Pandoc AST via its
JSON export.

33

Alternatives considered and rejected:34

A set of directives (see section above) can be inserted into the input files.35

The requirement this addresses is to be able to build consistent cross-
references across a range of documents. The final destinations of these
documents may be across multiple directories (or even servers) despite being
built from a single input directory. Additionally, being able trace backwards is
valuable to see which documents (and sections or paragraphs within them)
are being referred to.

36

Resolving cross-references

p — removed entirely — the paragraph number span (or an empty span if visible
numbering is disabled) is used as a target. Back-reference markers are also inserted
for each inbound v/a/h/b reference and a link symbol.
s — removed entirely — the section header is used as a target. Back-reference
markers are also inserted for each inbound v/a/h/b reference along with a section
sign as a link.
t — replaced with an empty anchor as target (except for a link symbol). Back-
reference markers are also inserted for each inbound v/a/b reference
v — replaced with the value of the paragraph or section number, or variable (error if
this points to a t target)
a — effectively replaced with the URL in angle brackets <…>. Because pandoc can’t
recognise some of the URLs we use as a URL in <…>, this pass instead uses a pair
…{class=a} to obtain the desired result
h — similar to a except the contents of […] is the value. It is suffixed …
{class=h} for stying
b — replaced with the URL in parantheses (…)
V, A, H, B — same as for v/a/h/b but doesn’t result in the back-reference markers

Render HTML

If the capabilities of the v directive (to show a value rather than build a link)
were not needed, then Pandoc spans and inline references may have been
viable. However, these identifiers are set too late for a post-processor to
handle (or at least would need a restructure); and cross-document referencing
would still require some external assistance.

37

Any identifiers set for sections in Pandoc using {…} will be preserved.38

Duplicate cross-references result in errors, as do missing targets/values.39

Note, a single space, LF, or CR-LF after x, p, s or t are also removed. This
makes the original markdown source easier to read by allowing some
whitespace. If whitespace is desired after one of these directives, just use (at
least) two items of whitespace.

40

The (near) final pass generates HTML using Pandoc. CSS is applied from the
default base.css file and the customisable custom.css file. A further CSS file
positions and styles the paragraph numbers. The --self-contained option
is set so that any resources such as images are embedded in the HTML file
rather than referenced.

41

Dependencies

Pandoc
Python 3

Recommended

GNU Make
Git (version control system)
Chromium (for PDF output)

Copyright

Eltanin document suite — Git VCS commit 6bcdaeed37fff80a69399ae5dd1c87b3470ac787 — publish — Wed, 11 Jan 2023 07:43:12 +0000
Generated in part by the Eltanin package

The default structure also includes a trailing block of HTML which uses the
script include/git-get-status to generate a footer with Git commit
information.

42

The body element is also marked with data-dir and data-file attributes to
enable the use of per-directory and/or per-file styling.

43

PDP

Some dependencies are absolute:44

PDP ET2

Copyright © 2022-2023 Phil Brooke & Green Pike Ltd45

This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License version 3 as published by the Free
Software Foundation.

46

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

47

You should have received a copy of the GNU General Public License along
with this program. If not, see http://www.gnu.org/licenses/.

48

file:///home/pjb/units/git-upload-202208/eltanin/output/test2/Eltanin_test_2.html#origin16
http://www.gnu.org/licenses/

